1 Basic Concepts of Thermodynamics

. 1 Thermodynamic system
A specified collection of matter is called a system, which is defined by the mass and the composition.
a. Open system: mass is exchanged with its surroundings;
b. Closed system: NO mass is exchanged with its surroundings.

What type of system does atmospheric thermodynamics deal with?

The systems that atmospheric thermodynamics deal with include

1) an air parcel;
2) a cloud;
3) the atmosphere;
4) an air mass etc.

Precisely speaking, they are open systems because mass can be changed by the entrainment and mixing processes.

But, we will treat them as a closed system in this course.
Assumptions:

1) the volume is large that mixing at the edges is negligible; or
2) the system is imbedded in a much larger mass which has the same properties.

2 Thermodynamic properties
The properties define the thermodynamic state of a system.
a. Intensive property: does not depend on the mass (m) or does not change with subdivision of the system, denoted by lowercase letters, e.g., z.
b. Extensive property: does depend on the mass (m) or does change with subdivision of the system, denoted by uppercase letters, e.g., Z.

Exception to the convention: T for temperature and m for mass

* An intensive property is also called a specific property if

$$
z=\frac{Z}{m}
$$

For example, volume V is an extensive property, so $\mathrm{v}=\mathrm{V} / \mathrm{m}$ (i.e., volume per unit mass) is a specific property and an intensive property.

* Homogeneous vs heterogeneous
a. A system is considered to be homogeneous if every intensive property has the same value for every point of the system.

$$
Z=m z
$$

b. A system is said to be heterogeneous if the intensive property of one portion is different from the property of another portion.

$$
Z=\sum_{i} m_{i} z_{i}
$$

* A system can exchange energy with its surroundings through two mechanisms:

1) Mechanical exchange (Expansion work)
performing work on the surroundings
2) Thermal exchange (Heat transfer)
transferring heat across the boundary

* A system is in thermodynamic equilibrium if it is in mechanical and thermal equilibrium.

Mechanical equilibrium: the pressure difference between the system and its surroundings is infinitesimal;

Thermal equilibrium: the temperature difference between the system and its surroundings is infinitesimal.

2.3 Expansion work

If a system is not in mechanical equilibrium with its surrounding it will expand or contract.

The incremental expansion work:

$$
\delta W=p d S d n=p d V
$$

p : the pressure exerted by the surroundings over the system
dV: the incremental volume
dS: the displaced section of surface
dn: the normal distance between original and expanded surface

2.4 Heat transfer

Adiabatic process: no heat is exchanged between the system and the environment.

Diabatic process: heat is exchanged between the system and the environment.

Which one will we use the most? Why?
2.5 State variables and equation of state

* A system, if its thermodynamic state is uniquely determined by any two intensive properties, is defined as a pure substance. The two properties are referred to as state variables.
* From any two state variables, a third can be determined by an equation of state,

$$
f\left(z_{1}, z_{2}, z_{3}\right)=0
$$

A pure substance only has two degrees of freedom. Any two state variables fix the thermodynamic state,

* Any third state variable as a function of the two independent state variables forms a state surface of the thermodynamic states, i.e.,

$$
z_{3}=g\left(z_{1}, z_{2}\right)
$$

Figure 2.3 State space of an ideal gas, illustrated in terms of p as a function of the state variables v and T. Superposed are contours of constant pressure (isobars), constant temperature (isotherms), and constant volume (isochores).

2.6 Thermodynamic process

* The transformation of a system between two states describes a path, which is called a thermodynamic process.
* There are infinite paths to connect two states.

Figure 2.4 Possible thermodynamic processes between two states: $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

* Exact differentials

Consider

$$
\delta z=M(x, y) d x+N(x, y) d y .
$$

If

$$
M(x, y)=\frac{\partial z}{\partial x}, \quad N(x, y)=\frac{\partial z}{\partial y},
$$

which is the same as

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x},
$$

we have

$$
\delta z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y=d z
$$

$d z$ is an exact differential, $z(x, y)$ is a point function which is path independent,

$$
\oint d z=0
$$

2.7 Equation of state for ideal gases

2.7.1 How to obtain the ideal gas equation?

The most common way to deduce fundamental equations is to observe controlled experiments.

* Based on Boyle's observation, if the temperature of a fixed mass of gas is constant, the volume of the gas (V) is inversely proportional to its pressure (p), i.e.,

$$
\begin{equation*}
p V=\text { const } \tag{1}
\end{equation*}
$$

* From Charles' observation, for a fixed mass of gas at constant pressure, the volume of the gas is directly proportional to its absolute temperature (T), i.e.,

$$
\begin{equation*}
\frac{V}{T}=\text { const } \tag{2}
\end{equation*}
$$

* For a fixed mass of gas, consider three different equilibrium states that have $(p, V, T),\left(p_{s}, V_{s}, T\right)$, and $\left(p_{s}, V_{0,}, T_{0}\right)$, respectively.
* From (1) and (2), we have

$$
p V=p_{s} V_{s}, \quad \frac{V_{s}}{T}=\frac{V_{0 s}}{T_{0}}
$$

Combine them,

$$
\begin{equation*}
\frac{p V}{T}=\frac{p_{s} V_{0 s}}{T_{0}} \tag{3}
\end{equation*}
$$

Divide (3) by the molar abundance (or number of moles)

$$
n=\frac{m}{M}
$$

which is constant since the mass (\mathbf{m}) and molecular weight (M) are constant, we have

$$
\begin{equation*}
\frac{p V}{T n}=\frac{p_{s} V_{0 s}}{T_{0} n} \tag{4}
\end{equation*}
$$

* For a standard condition,

$$
\begin{aligned}
& T_{0}=273.15 \mathrm{~K}, p_{s}=1 \mathrm{~atm}=1013.25 \mathrm{mb}=1.01325 \times 10^{5} \mathrm{kgm}^{-1} \mathrm{~s}^{-2} \\
& V_{0 s} / n=22.4 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{mol} \\
& R^{*}=\frac{p_{s} V_{0 s}}{T_{0} n}=8.3143 \mathrm{Jmol}{ }^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

is called the universal gas constant.
Now, (4) can be rearranged to get the equation of state for the ideal gas

$$
\begin{equation*}
p V=n R^{*} T \tag{5}
\end{equation*}
$$

2.7.2 Equivalent forms of ideal gas equation

Ideal gas equation (5) can be written in several forms,

$$
\begin{equation*}
p V=\frac{m}{M} R^{*} T=m R T \tag{6}
\end{equation*}
$$

$R=\frac{R^{*}}{M}$ is the specific gas constant.
Since the specific volume
$v=\frac{V}{m}=\frac{1}{\rho}, \rho$ is the density,
(6) can be also written as

$$
\begin{equation*}
p v=R T, \text { or } p=\rho R T \tag{7}
\end{equation*}
$$

2.7.3 Equation of state for mixture of ideal gases

Each gas obeys its own state equation, for the i th gas

$$
\begin{equation*}
p_{i} V_{i}=m_{i} R_{i} T_{i} \tag{8}
\end{equation*}
$$

Since in a mixture of gases,

* The partial pressure p_{i} is:
the pressure the i th gas would have if the same mass existed alone at the same temperature and occupied the same volume as the mixture;
* The partial volume ${ }_{V_{i}}$ is:
the volume the i th gas would occupy if the same mass existed alone at the same temperature and pressure.
(8) can be written in form,

$$
\begin{equation*}
p_{i} V=m_{i} R_{i} T \tag{9}
\end{equation*}
$$

Sum (9) over all gases in the mixture, and apply Dalton's law,

$$
p=\sum_{i} p_{i}
$$

we get the equation of state for the mixture,

$$
\begin{equation*}
p V=m R T \tag{10}
\end{equation*}
$$

which is similar to the ideal gas equation (6).

$$
\begin{gathered}
m=\sum_{i} m_{i} \\
\bar{R}=\frac{\sum_{i} m_{i} R_{i}}{m}
\end{gathered}
$$

The mean molecular weight of the mixture is defined by

$$
\begin{equation*}
\bar{M}=\frac{\sum_{i} n_{i} M_{i}}{n}=\frac{\sum_{i} m_{i}}{n}=\frac{m}{n} \tag{11}
\end{equation*}
$$

Since

$$
n=\sum_{i} n_{i}=\sum_{i} \frac{m_{i}}{M_{i}}
$$

(11) can be written as

$$
\bar{M}=\frac{R^{*} m}{\sum_{i} m_{i}\left(R^{*} / M_{i}\right)}=\frac{R^{*} m}{\sum_{i} m_{i} R_{i}}=\frac{R^{*}}{\bar{R}}
$$

The absolute concentration of the ${ }_{i}$ th gas is measured by its density ρ_{i}
The molar fraction is used to measure the relative concentration of the i th gas over the total abundance air in the mixture,

$$
N_{i}=\frac{n_{i}}{n}
$$

Using the state equations for the ${ }_{i}$ th gas and the mixture of gases, we can also have

$$
\begin{equation*}
N_{i}=\frac{n_{i}}{n}=\frac{p_{i}}{p}=\frac{V_{i}}{V} \tag{12}
\end{equation*}
$$

The mass fraction is also used to measure the relative concentration.
Using $n=m / \bar{M}$, and $n_{i}=m_{i} / M_{i}$ in (12), we can get

$$
\frac{m_{i}}{m}=\frac{n_{i}}{n} \frac{M_{i}}{\bar{M}}=N_{i} \frac{M_{i}}{\bar{M}}
$$

